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AN EMPIRICAL EVALUATION OF FACTOR RELIABILITY

Douglas N. Jackson Martin E. Morf

University of Western Ontario University of Windsor

Abst

The psychometric reliability of a factor, defined as its generaliz-

ability across samples drawn from the same population of tests, is con-

si ered as a necessary precondition for the scientific meaningfulness

factor analytic results. A solution to the problem of generalizability is

illustrated empirically on data from a set of tests designed to measure

facets of response styles and of personality dimensions. Parallel sets of

measures based on personality scales defining each of seven factors were

separately factored. Independent sets of component scores derived from the

orthogonal least squares fit to the oblique factor pattern matrix were com-

puted, and these component scores were intercorrelated between the two sets,

yielding factor reliabilities, whose values ranged fro .65 to .85 (a < .0001,

for each factor). A corresponding analysis based on scores derived from

random binary data yielded nonsignificant factor reliabilities ranging from

-.12 to +.07. It was recommended that such a test of factor generalizability

be incorporated routinely into factor analytic investigations, particularly

those employing Procrustes-type rotations.
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The present study has two major aims: (a) to propose a method of

estimating the psychometric reliability or generalizability of a set of fac-

tors; and (b) to apply this method to a set of empirical data whose reli-

ability has been questioned in the literature.

The simplest r,nd least controversial, but also the least informative,

definition of a factor is: "a set of loadings." Such sets of loadings are

obtained from correlation matrices by procedures like the principal factor

method (Harman, 1967). If unities are inserted in the main diagonal of the

correlation matrix this procedure yields a mathematically elegant and unique

solution. However, some or all of the factors obtained may reflect pseudo-

relationships based entirely on chance, while others may account for real

relationships in psychologically nonmeaningful ways. Such preliminary

factor solutions thus raise two problems: (1) Which factors reflect true

common variance as distinguished from error variance? (2) if a set of fac-

tors does not merely reflect chance relationships, how may axes be rotated

to yield psychologically meaningful factors?

A variety of characteristics permit one to make( inferences about the

significance of a factor; among these are the size of its eigenvalue, the

standard errors of its loadings, and its contribution to the communalities

of the variables (Cliff & Hamburger, 1967). Since the principal factor method

,-_-..tracts factors in order of size (as reflected by their eigenvalues), the

first question can be rephrased to: How many factors should be retained for

3
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rotation and interpretation? The question of which, or how many, factors to

retain has been approached in a number of ways. First, rules of thumb have

been applied ( Kaiser, 1960). Second, mathematically derived statistic_

reflecting the significance of factors have been developed (Jo eskog, 1967,

1969; Lawley, 1943; Rao, 1955). Third, real data and random data have

been factor analyzed together and only the factors based on real data with

eigenvalues greater than the largest eigenvalue of a random factor retained

(Horn, 1965),

None of these methods provide unequivocal answers. The answers are

contingent on the assumptions of the method that underlies them; on whether

it is the subjects or the variabl s that are treated as a population, and

upon which of several properties of factors the emphasis is placed. While

preliminary, unrotated factors obtained by some extraction method may re-

flect a pseudo-meaningful structure attributable to chance, rotated factors

are even more likely to do so. Rotation has been identified as occupying a

critical role in the possible capitalization upon chance implicit in the

emergence of a pseudo-meani_gful structure based on random data.
3

This is

especially true when the method of rotation is "procrustean" and when the

constraint of orthogonality does not interfere with the maximization of load-

ings in accordance with the investigator's theory (Horn, 1967; Humphreys,

Ilgen, McGrath, & Montanelli, 1969). As a result, the factor analytic

investigator is faced with the dilemma of blind rotation providing mathe-

matically satisfactory but not necessarily psychologically meaningful solu-

tions (Guilford & Hoepfner, 1969; Saunders, 1960) versus rotation that in-

creases the possibility of a pseudo-meaningful structure.
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Some ways around this dilemma are suggested by examination of the

criteria to be met by satisfactory factor solutions. Guilford and Hoepfner

(1969), for example, suggest that the factors obtained should be amenable to

investigation by nonfactor-analytical means, should fit relevant psychological

theory, and should be replicable. Kaiser and Caffrey (1965) have elaborated

the notion of factor replicability by distinguishing between statistical rep-

lication across samples of observations and psychometric replication across

samples of variables. Other properties of satisfactory solutions are low

standard errors of the loadings and small deviation of the means of the

sampling distributions of loadings from the population parameters (Cliff &

Pennell, 1967; Pennell, 1968).

Focus on the properties of satisfactory solutions has led to the investi-

gation of the effects on them of various independent variables by means of

Monte Carlo simulation studies and to the assessment of factor invariance

and other properties of factor solutions in specific analyses of real data.

A number of useful rules of thumb, helpful in preventing the emergence of

pseudo-meaningful structure, have emerged from the first of these two cate-

gories of studies. Horn (1967) and Humphreys et al. (1969) factor analyzed

randomly generated data and obtained results which suggest that the number

of observations and the ratio of variables to factors should be higher, and

the ratio of variables to subjects lower, than they are in most studies.

Cliff and Pennell (1967) and Pennell (1968) constructed population factor

matrices and generated large numbers of sample correlation matrices implied

by the . They extracted preliminary factors from the correlation matrices

and rotated them to the best least-squares fit with the original population
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factor matrix (Cliff, 1966). Their results indicate that the larger sample

size, communality, and factor size, the greater the consistency, and the

smaller the bias, of the loadings.

Given the rules of thumb which follow from studies like these, it is

possible to design reasonably sound factor analytical studies. The specific

adequacy of each individual study, however, requires separate examination.

The present study focuses on this problem. The adequacy of a specific fac-

tor analytical solution obtained in an earlier study (Morf & Jackson, in press)

and subjected to some intuitive criticism by Block (1971) regarding its

supposed chance basis, is tested by examining the invariance of the factors

across two parallel subsets of measures included in the original battery.

The psychometric reliability of a factor solution is but one aspect

that could be investigated. Factor invariance or replicability over sam-

ples of tests is, however, a necessary condition for draTiing generalizable

conclusions regarding results. Replicability has frequently been described

as the "minimum requirement of science." Demonstrating factor replicability,

in the pschometric sense, is tantamount to demonstrating that chance alone

does not account for the results.

Method

The basic data for this study have been published by Morf and Jackson

(in press). Since that report fully described procedures for data collection and

substantive interpretation of primary and second-order factors, these issues

will notbe highlighted here. Briefly, the study was designed to elicit re-

sponses from 196 liberal arts undergraduates, 87 males and 109 females, to a
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personality questionnaire of 560 items compr sing 49 nonoverlapping scales

relevant to eght factors, four attributable to content (Exhibition, Play,

Succorance, and Understanding), and four attributable to response styles

(True Responding, Item Endorsement, Desirability, and Adjective Endorsement).

A facet design was employed, in which each substantive personality scale was

designed to load one content factor and at least one response style factor.

Reference tests for response style factors were also included. The results

from the Morf and Jackson principal axis analysis and rotation to a clustren

(Bentier, 1971) criterion yielded unusually clear support for their hypothe-

sized factors, with virtually all tests appropriately and substantially load-

ing the hypothesized dimensions. The findings did not, however, convince

Block (1971), who, citing Horn (1967) and Humphreys et al. (1969), attribu-

ted them to chance. Even though the Morf and Jackson study more than met

the Humphreys recommendations of at least four tests defining a fac-

tor (indeed, the e were more than 30 defining each of the major acquiescence

dimensions), the fact that, as far as the authors were aware, no satisfactory

test of psychometric reliability had been reported provided an impetus for

the present investigation.

Method Anal-7sis

Each of the ORO sets of scales was separately and independently factored,

subjected to an independent analytic patterned rotation, an orthogonal Pro-

crustes rotation, and two separate matrices of component scores comp ted.

These two sets of component scores were then intercorrelated. The correla-

tions between corresponding component scores for a given factor could then be

evaluated for statistical significance and for reliability.
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The first step in the analytic treatment was to divide the set of vari-

ables into two sets. This was done in such a way so as to place an equal

number of tests hypothesized to reflect each factor into each set. All test

scores were centered at the mean of the test and scaled to have a unit

standard deviation. These two matrices of standardized scores were inter-

cotrelated separately within each battery, unities retained in the diagonal,

and, because there were seven hypothesized factors, seven principal com-

ponents factors were extracted from each battery. Hecau,e the Adjective

Endorsement factor had been defined by only three variables which differed in

desirability level, it was not possible to obtain parallel sets of variables

to define it. Hence the scales originally defining this factor were dropped

from the analysis, as were two additional variables not loading highly on

any factor, Infrequency and Sex.

The basic procedure for the orthogonal Procrustes solution was analyt-

ically to place axes at the centroid of the respective hypothesized salient

test vectors and then to find the orthogonal rotation fitting this oblique

solution in a least squares sense. A procedure developed by Horst (1965,

pp. 394-397) was employed to transform each of the principal axis factor

matrices separately into alignment with their respective hypothesized pat-

terns. The transposed principal axis factor loading matrix is postmultiplied

by a binary hypothesis matrix. The matrix product is premultiplied by the

reciprocal of the eigenvalues associated with the largest principal compon-

ents, and the resulting matrix normalized by columns. This matrix thus serves

as an oblique transformation matrix, h, which is used to postmultiply the

initial principal axis factor loading matrix, A, to yield a primary component
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b ( f. Kaiser, 1962), representing loadings of tests on

(1)

A proof of the rationale on which this method is based is provided by

Horst (1965, pp. 411-412).

Bentler's (1968, 1971) clustran criterion, based on a proof due to

Gibson (1962), yields an orthonormal rotated factor loading matrix, B

fitting b in a least squares sense. If

h = P

then Gibson (1962) has proved that by removing the diagonal matrix, 6
1/2

(2)

one obtains a matrix T, which will transform the original principal axis

factor matrix, A, into B .

and

T = PQ

B = AT (4)

Computationally, I may be obtained by first extracting eigenvalues and asso-

ciated eigenvectors from the minor product moment of h . The eigenvectors

will correspond to Q . P may be obtained by premultiplying Q by h and

then postmultiplying the result by the diagonal matrix comprising the recip-

rocal square roots of the eigenvalues.

From matrix T, component scores, Y, may be calculated for each set

(cf. Kaiser, 1962), using the original principal axis factor matrix, A, its

associated eigenvalues 6
A '

and the original standardized data matrix, Z ,
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K =
A

T

L = AK

Y = ZL

(5)

(7)

Because the component scores are based on an orthogonal normal transforma-

tion of a principal axis factor matrix, the inte correlation of these scores

within each set will confirm their orthogonality

I = Y'Y (8)

Finally, component scores from each set are correlated to yield a matrix

of correlations between the estimates of component scores derived from dif-

ferent sets of tests

R
21

(9)

If the factors are listed in the same order within each battery, the diagonal

of R
12

will contain the estimates of psychometric factor reliability. These

estimates may be corrected by the Spearman-Brown formula, if an evaluation of

the reliability of factors derivable from the entire set is to be made. This

procedure may readily be generalized to any number of subsets of tests. Of

course, as the number of subsets of tests increases, there may be increasing

difficulty in defining, within each subset, tests of sufficient quality to

define reliable factors.

Wrigley and Neuhaus ( arman, 1967, pp. 271-272) have defined a coefficient

of congruence for measuring the degree of factorial similarity between,two

sets of tests for the same sample of individuals. This is calculated by

10
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dividing the sum of the crossproducts of factor scores of two factors by the

geometric mean of the respective variances. If component scores in standard

score form as in the present study are employed in the Wrigley and Neuhaus

formula, their formula will give the identical results given by (9).

In a similar manner, a parallel analysis was undertaken on two sets of

random data. Random binary digits were generated corresponding to each

560 items answered by 196 subjects and were scored using the same scoring

keys employed on the real subjects. Scale scores were divided into two sub-

sets of scales, the same sets employed previously. The identical factor

analysis and computation of component scores was undertaken on these subsets,

yielding two rotated factor loading matrices and two 196 by seven arrays of

component scores for each set. These arrays, when intercorrelated, could be

interpreted as the degree of stability manifested by the hypothetical sub-

jects on two independently identified sets of seven latent dimensions.

Although there is no reason in factor theory to suppose that random data of

this type would yield evidence of stability across independent sets even if

these sets have been rotated to reflect the same factors, and from one point

of view this demonstration is trivial, this sort of analysis nevertheless

might serve to dispel any lingering doubts. There are, of course, a variety

of other points at which randomness might have been introduced into the analy-

sis. Rather than scores based on random binary digits, scores derived from

random normal deviates might have been employed, for example, or real data

might have been assigned randomly to subjects in one of the sets. It would

not be a good use of time to evaluate these alternatives, which, indeed,

would demonstrate only that factor scores based on separate sets of random

data have a population correlation of zero. One suggested alternative which

ii-
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would clearly be inappropriate would be to use real data but to base the

variable scores on random keys. To the extent that the hypothesized general

factors were present in the data, or to the extent that random keys tapped

common factors, factor scores derived from such keys would not correlate zero.

Such a procedure would merely be a further, although unsystematic test of

our hypotheses. In any case, the analysis of random data is an adjunct to

the major analysis, which focuses on the reliability of factor scores de-

rived from real data. Although possibly trivial and gratuitous, it does

serve to emphasize the independence of analyses as between the two sets.

Table 1 presents the scales and the hypothesis matrix. The scale labels

are described in detail by Morf and Jackson (in press). For present purposes

it is sufficient to note the following: (1) in the case of the four letter

Insert Table 1 about here

labels the first letter (E, P, 5, U2 or H) s2ands for the content reflected

by the scale (E stands for Exhibition, P for Play, S for Succorance, U for

Understanding, and H for heterogeneous content), the second letter (A or 0

stands for attitude item or self-desc.riptive format, the third (P or N) stands

for positive or negative wording, and the fourth for true or false (T or F)

keying; (2) that the first letter of the three letter labels (F) stands for

scales consisting of California F Scale items, differing in wording (A stands

for absolute wording, R for relative wording) and keying (T stands for true,

and F for false keying); (3) that DA and DB stand for the parallel Desirability

scales of Forms A and B of the Personality Research Form (Jackson, 1967).

1.2
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Results

Factor Anal tic Results

The factor loadings obtained in the factor analyses of the 23 scales

comprising Set A are shown in Table 2. Those for the factor analyses of the

23 scales of Set L are presented in Table 3. These results may be summarized

for each set in a parallel manner.

Factor I -- Set A and Set B

All true keyed acales load 21Ls_itively.

All false keyed .scales load negatively.

Clearly this factor is associated with the direction of keying of the

scales. In both sets, the true and false keyed F scales have extreme loadings.

Factor II -- Set A and Set B

Positively-worded true keyed and negatively-worded false kejred scales

load 2sTitively..-

Negatively-worded true keyed and positively-worded false keyed scales

load tji_emtiy.
This factor is identified as an item endorsement factor, with the posi-

tive pole marked by a tendency to endorse personality scale content, and the

negative pole, to deny it Forty-one of the 44 hypothesized loadings were

in the expected direction for this factor. Only three small loadings for

Set 13 were exceptions.

Factor III

Desirability (A) .69 (Set A)

Desirability (B) .84 (Set B)

This factor represe ts a tendency to respond desirably or undesirably.

1
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Factors IV, V, VI, VII

Set BSet A

Exhibition SPF .69 Exhibition SPT .49

Exhibition SNT .60 Exhibition SNF .47

Exhibition APT .61 Exhibition APF .60

Exhibition ANF .41 Exhibition ANT .38

Play SPT .65 Play SPF -.10

Play SNF .63 Play SNT .64

Play APF .41 Play APT .63

Play ANT .59 Play ANF .53

Sentience SPF .65 Sentience SPT .55

Sentience SNT .64 Sentience SNF .47

Sentience APT .50 Sentience APF .60

Sentience ANF .53 Sentience ANT .63

Understanding SPT .71 Understanding SPF .70

Understanding SNF .63 Understanding SNT .53

Understanding APF .59 Understanding APT .48

Understanding ANT .34 Understanding ANF .59

These factors clearly represent the four content dimensions represented

by the respective scale names.

Tables 2 and 3 present the orthogonal rotated factor loading matrix for

Set A and for Set B, respectively. Each table first presents the real data

analysis and then the random data analysis.

14



-13-

Insert Tables 2 and 3 about here

Evaluations of the oodness of fit of factors based on the random and

real data solutions. The random and real data factor solutions can be com-

pared with respect to a number of indices reflecting goodness of fit to the

target matrix. Figure 1 compares them in terms of two indices.
4

The first,

Insert Figure 1 about here

taking into account only the direction of relevant loadings, is most approp-

riate for Factors I and II, which are defined by a large number of variables.

The second, taking into account both the direction and relative size of rele-

vant loadings, is more appropriate for the content factors defined by only

four variables each. The criterion used here was whether or not the predicted

loadings were the highest obtained for the factor.

The Morf and Jackson (in press) study was designed to permit the emergence

of Factors I (true responding) and II (item endorsement). Almost all vari-

ables analyzed were, therefore, relevant to their definition in the sense

that these factors were determined by almost all variables. As Table 1 shows,

in the present parallel analyses, 22 of the 23 variables were hypothesized to

load in a specific direction on these two factors. Except for the near zero

loadings of three variables on Factor II for Set B, all 88 relevant loadings

were in the specified direction for the real data- In the case of the random

data, however, 59 of these 88 loadings were in the nonpredicted direction.

The single relevant variable for Factor III, the desirability scale,

obtained the highest loading in the predicted direction in the two real, but

not in the two random, data analyses. In the real data solutions, the four
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relevant variables defining each content factor obtained the largest loadings

in the specified direction, while in the random set only 18 of these 32 vari-

ables obtai-led loa ngs in the predicted direction and also exceeded the

largest irrelevant loading. Thus, although it is difficult to quantify the

degree of goodness of fit to the target matrix, these informal comparisons

suggest that a clearly better fit was obtained for the real than for the

random data.

A chi square calculated on the random data solutions to test whether

the surprisingly mall numbers of loadings on Factors I and II in the specified

direction deviated significantly from the numbers one would expect to load in

the specified direction on the basis of chance proved to be significant at

the .05 level. The fit to the target matrix of these two factors is thus some-

what worse than one would expect on the basis of chance. This might be sur-

prising at first glance, but becomes clearer when one recognizes that the

clustran rotation procedure had fewer constraints operating in fitting the

factors defined by few relevant variables, leaving itself very little leeway

to fit the two factors defined by many variables. If this interpretation has

merit, this finding has a bearing on the conclusions of Humphreys et al. re-

garding the critical role of the number of defining variables for a factor.

Real and randan data factor re1iabi1ties . Although the real data solu-

tions seem to fit the target matrix better than the random data solutions,

these results alone do not establish the psychometric reliability of the fac-

tors. In order to accomplish this, the component scores of each subject on

each of the seven factors of the four solutions were computed as outlined in

the previous section. Table 4 presents the correlations obtained between

16
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Insert Table 4 about here

these component scores on corresponding real data and random data factors.

Also presented are factor reliabilities, obtained by applying the Spearman-

Brown formula to these correlation coefficients. The real and random data

are distinguished by these correlations considerably more clearly than by

their respective fits to the target matrix. All correlations obtained for

the real data are significant at the .0001 level, while none of those ob-

tained for the random data are significant at the .05 level.

Table 5 presents the upper half of the supermatrix of correlations

Insert Table 5 about here

between component scores in the two sets. The intercorrelations of the vari-

ables for Set A form an identity matrix within the limits of rounding

error. The same is true for the correlations of component scores within

Set B, which a e not presented. Correlations between component scores based

on corresponding factors from the two sets are presented in the right-hand

section of Table 5. It will be noted that factor reliabilities, comprising

tl-P.a minor diagonal, are substantially higher than off-diagonal elements of

the heteroset submatrix.

The null hypothesis ( f. Block, 1971) that the Morf-Jackson far:tors are

due to capitalization on chance in the rotation of axes may be rejected with

a substantial degree of confidence.
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Discussion

The papers by Horn (1967) and by Humphreys et al. (1969) raised pro-

found questions regarding the interpretation of the results from factor

analytic studies. They emphasized the point that the apparent meaningful-

ness of a factor structure was no guarantee that it necessarily reflected

true c mmon factor variance among variables. A casual reading of the latter

papers might suggest that one might place little confidence in the results

of factor analyses conducted on sample sizes of less than a very substantial

number. The present investigation focuses on the problem of factor reli-

ability, and suggests a means of interpreting the psychometric reliability

of factors, by seeking evidence for stability in factor or c mponent scores

across independent sets of tests. The method proposed tends to emphasize

the parameters identified by Humphreys et al. as crucial, namely, the ratio

of the number of variables to the number of factors, and the number of sub-

jects. Our method requires a sufficient number of variables to permit par-

tition of the set of variables into two subsets, and a sufficient number of

subjects to yield statistically significant psychometric factor reliabilities.

If these parameters are satisfactorily large, a significance test may be

undertaken on the consistency of factor scores, and a decision reached re-

garding the probable psychometric significance of factors. A rejection of

the null hypothesis under these circumstances would imply that the set of

factors is replicable across distinct batteries of tests. Thus, it might

be concluded that results are not due purely to chance, because, as our

analysis of random data illustrated, there is no reason to expect data wholly

lacking in psychometric reliability to show stability across separate subsets
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of tests. Thus, chance effects, as uncovered by Humphreys and Horn, cannot

operate to contribute to factor reliability as here defined.

A finding of substantial psychometric factor reliabilities would permit

the inference that the factors independently identified by separate batteries

tended to reflect the same processes. These two inferences are different in

the same sense that evidence for merely a statistically significant reli-

ability might be differentiated from evidence for a substantial reliability

for a given test. As with individual tests, one's confidence in the psycho-

metric reliability of a factor might be a linear function of the magnitude

the consistency of factor scores across samples of tests. Thus, statis-

tically significant factor reliabilities might be considered a necessary

but not a sufficient criterion for judging the adequacy of a factorial solu-

tion. Because of the arbitrariness of rotation, some correlation might be

expected between separate solutions so long as axes were oriented in such a

way as to be mutually correlated to some degree. A high psychometric fac-

tor reliability would imply that each set of tests defining the factor

tends to reflect the factor univocally, and, furthermore, that the final

rotated solution tends to identify independent samples of subjects' scores

along a common dimension.

The rationale f r psychometric reliability undertaken here can hardly

be considered novel, at least in the context of classical univariate test

theory. The notion that a set of items comprise a sample from a hypothetical

universe has been incorporated in a number of formulations (see Bock &

Wood, 1971, for a review), and i_ licitly, at least, seems to have been

appreciated at least 60 years ago when Spearman (1910) and Brown ',:l910)
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published their classic articles on the effect of test length upon reli-

ability. Curiously, this kind of thinking, while occasionally appearing in

theoretical articles on factor analysis, has had almost no impact on the

practice of factor analysis, where there is often a dearth of good reference

tests, frequently insufficient to permit subsets each capable of defining a

factor. A well-known kit of reference tests (French, Ekstrom, & Price, 1963),

for example, lists only three basic tests per factor. Until the advent of

the computer, analyses were sufficiently laborious to discourage parallel

replication for the purpose of appraising psychometric generalization.

Furthermore, only a minority of investigators (e.g., Horst, 1965) have fo-

cused attention on the measurement of individuals based upon factor analy-

sis--in most cases the factor loading matrix is of considerably more interest

than the matrix of factor scores. But one would have little confidence in

factor analytic results if measures based on one set of reference tests were

wholly independent of those based on a second set of putatively parallel

tests. Furthermore, the previous objection of undue computational labor in

employing factor scores is hardly relevant to the present availability of

modern, high-speed computing facilities. Certainly other approaches, such

as those which might derive from intraclass correlation under various assump-

tions, might represent viable alternatives to the one proposed here.

It should be noted that our analysis made no attempt to focus on what

Kaiser and Caffrey (1965) termed the statistical reliability of factors. The

latter authors suggest that a completely general solution to the problem of

factor reliability will probably take into account both the psychometric and

the statistical reliability of factors, but note that this would be a rather
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complex problem. The evidence to date suggests that evaluation of the statis-

tical reliability of factor solutions will have to wrestle not only with the

problems posed by Horn and Humphreys et al., but with more recent findings

by Nesselroade and Baltes (1970) that attempts at factor matching based upon

such optimal criteria as least squares provide a relatively satisfactory fit

for random data. In addition, further work will have to be undertaken more

clearly to define the concept of a subject population because, as has clearly

been demonstrated (Tucker, 1966), the factorial structure describing dif-

ferent types of subjects may vary both in terms of number and nature of the

obtained factors, and in terms of factor correlations.



-20-

Summary and Conclusions

1. The psychometric reliability of a factor, defined as its generaliz-

ability across the population of tests hypothesized to measure the factor,

may be appraised empirically by correlating factor scores based on indepen-

dently analyzed parallel subsets of tests.

2. Product-moment correlations so obtained may be tested for statis-

tical significance and may be corrected by the Spearman-Brown formula to

yield an index of reliability.

3. When psychometric factor reliability analysis was applied to fac-

tor scores generated by tests hypothesized to reflect three response style

and four content factors, all reliability coefficients were significant at

the .0001 level, thus failing to support a conjecture made by Block that

these factors were due to capitalization on chance.

4. When a similar analysis was applied to random data, none of the

psychometric factor reliabilities departed significantly from zero.

5. Comparison of the results from real and random data analyses sup-

ported the critical role of the number of tests defining each factor.

6. An evaluation of the psychometric reliability of a factor should

be undertaken routinely in factor studies particularly in those employing

rotation to optimize fit to a set of hypotheses.
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Footnotes

1
Reprint requests should be directed to Douglas N. Jackson, Department

of Psychology, University of Western Ontario, London 72, Ontario, CANADA.

The authors appreciate the helpful comments provided by Harry H. Harman,

Walter Kristof, Ingram Olkin, and Roger Pennell regarding the reporting of

this study. Thanks are also due to William Krane, who assisted in generat-

ing the random data. Supported in part by Research Grant No. 397 from the

Ontario Mental Health Foundation, and a Special Research Fellowship from

the National Institute of Mental Health, U.S. Public Health Service to

Douglas N. Jackson and a Research Grant ro Martin E. Morf from Canada

Council.

2
This study was completed while Douglas N. Jackson was a Visiting

Scholar, Division of Psychological Studies, Educational Testing Service,

Princeton, New Jersey.

3
Although, strictly speaking, the rotation of axes does not occur in

certain modern approaches to factor analysis, such as the one proposed by

Joreskog (1969), the analogous problem of the fitting of parameters on the

basis of observed data remains.

4Factor III, the Desirability Factor, with only a single hypothesized

high loading, is not evaluated in Figure 1.
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Table 1

Hypothesis Matrices for Parallel Sets of Personality Scales

Set A Set B II III IV V VI VII

Set A Set B Set A Set 13

1. ESPF ESPT -1 1 -1 1 0 1 0 0 0

2. ESNT ESNF 1 -1 -1 1 0 1 0 0 0

3. EAPT EAPF 1 -1 1 -1 0 1 0 0 0

4. EANF EANT -1 1 1 -I 0 1 0 0 0

5. PSPT PSPF 1 -1 1 -1 0 0 1 0 0

6. PSNF PSNT -1 1 1 -1 0 0 1 0 0

7. PAPF PAPT -1 1 -1 1 0 0 1 0 0

8. PANT PANF 1 -1 -1 1 0 0 1 0 0

9. SSPF SSPT -1 1 -1 1 0 0 0 1 0

10. SSNT SSNF 1 -1 -1 1 0 0 0 1 0

11. SAPT SAPF 1 -1 1 -1 0 0 0 1 0

12. SANF SANT -1 1 1 -1 0 0 0 1 0

13. USPT USPF 1 -1 1 -1 0 0 0 0 1

14. USNF USNT -1 1 1 -1 0 0 0 0 1

15. UAPF UAPT -1 1 -1 1 0 0 0 0 1

16. UANT UANF 1 -1 -1 1 0 0 0 0 1

17. HMPF HMPT -1 I -1 1 0 0 0 0 0

18. HMNT HNINF 1 -1 -1 1 0 0 0 0 0

19. HPPT HPPF 1 -1 1 -1 0 0 0 0 0

20. HPNF HPNT -1 1 1 -1 0 0 0 0 0

21. DE DA 0 0 0 0 1 0 0 0 0

22. FRF FRT -1 1 -1 1 0 0 0 0 0

23. FAT FAF 1 -1 1 -1 0 0 0 0 0

Note:--A positive unity causes the rotation to 'ek to yield a positive loading

for the variable in question, negative unity seeks yield a negative loading and

a zero leaves the loading for that variable unconstrained.
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Table 4

Factor Reliabilities for the Parallel Real Data Analysis

and the Parallel Random Data Analyses

Factor
Real Data Analysis

Uncorrected Corrected
Random

Data Analysis

.74 .85 04

II .59 .70 04

.49 .65 04

IV .50 .66 01

V .56 .72 07

VI .53 .70 -11

VII ,56 .72 12

a
Spearman-Brown formula.
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